## iSCWO: Destruction of Hazardous Wastes



#### Transitioning High-Risk R&D into Operational Systems

## Supercritical Water Oxidation

- Developed for safe treatment of military wastes
- Highest performance hazardous waste disposal system
- Transitioned to commercial applications



Operational system for destruction of chemical agents for the U.S. Army



Commercial system for European customer



#### **GA Developing SCWO Since 1992**

- Development and testing of SCWO at GA (\$90M)
- Delivered Energetics Hydrolysis/ SCWO system to BGCAPP site on schedule and within budget (\$110M)
- Development and delivery of iSCWO systems to US Government (\$50M)
- Other (\$6M)





GA and US Government investment in SCWO/iSCWO totals more than \$250M

#### **Technical & Cost Advantages**





- Cost competitive with incineration
- No airborne particulates
- Very low nitrogen oxide, sulfur oxide, and total organic carbon content
- Clean water by-product requiring little or no post-treatment
- Waste stream testing service before purchase

Rapid, complete organic destruction with no pollution abatement system

#### **Customer Engagement Process**

**Gather Data** 

- Determine wastes' chemical composition
- Define interface, siting and schedule requirements
- Define throughput and effluent discharge requirements
- Evaluate basic CAPEX and OPEX

Finalize Requirements

- Decide if testing at GA is required; conduct testing if necessary
- Meet with customers to finalize requirements for RFP

Develop and Submit Proposal

- Scope of equipment supply
- Scope of work (installation, checkout/startup, support operations)
- Spare parts
- Schedule and deliverables





### A Wide Range of Chemicals Successfully Treated with GA Technologies

#### **Complex Feeds**

Activated carbon (spent)\* Adhesives\* Aqueous Cleaning Solution\* AFFF Antifreeze\* Aroclor 1242

Aroclor 1254 Aroclor 1260\* Bacillus stearothermophilus (heat

resistant spores) Brake fluid\* Bran cereal

Caprolactum wastewater Casein Chlorinated plastics (shredded)\*

Class 1.1 solid propellant\* Class 1.3 AP-depleted solid

propellant

Coal Coal waste Corn flakes\* Corn oil Corn starch

Diesel fuel E. coli. Endotoxin (pyroaen)

Aluminum hydroxide\*

Aluminum oxide sodium

Ammonium perchlorate®

Ammonium chloride

Ammonium nitrate\*

Ammonium nitrite\*

Ammonium sulfate

Ammonium sulfite\*

Calcium carbonate Calcium chloride

Calcium phosphate

Calcium oxide

Calcium sulfate

Cerium chloride\*

Copper chloride

Aluminum metal

Ammonia\*

Borio acid

Bromides

Explosives/energetics/propellents (hydrolyzed RDX, TNT. Tetryl, NG, NC)\* Fermentation byproducts\* Fuel oil GB chemical agent (nest, 'hydrolyzed'\*)

Gray water\* Greases (mixed)\* Human waste

Hydraulic fluid\* Industrial biostudee Ion exchange resins (styrene divinyl benzene) Kerosene\*

Lube oil (molybdenum disulfide oil)\* Malaria antigen

Motor oil\* Mustard chemical agent (neat. hydrolyzed\*) Navy shore-based wastes\*

Olive oil Organic salts (complex mixtures)

**Inorganic Substances** 

Paint, paint sludges\* Paper

Hydrochloric acid\*

Hydroffuoric acid

Iron chloride

Lead chloride®

Lithium sulfate

Lithium hydroxide

Lead sulfate\*

Iron oxide\*

Fluorides

Paraffin oil

Pesticide manufacturing wastewater

Pharmaceutical waste\* Photographic developer paste Photographic developer

solutions\* Polychlorotrifluoroethylene (PCTFE)\*

Pig manure

Propellants (hydrolyzed)\*

Protein Pulp/paper mill sludge Sewage sludge (black water)\*

Soil contaminated with organics Sovbean plants Sulfolobus acidocaldarius

Transformer oil\* Trimsol cutting oil\*

VX chemical agent (neat. hydrolyzed\*)

Waste oils (chlorinated and nonchlorinated)\* Wheat straw\*

Wood fibers

Yeast

Potassium chloride Potassium hydroxide

Potassium sulfate Silica

Sodium bicarbonate\* Sodium carbonate

Sodium chloride\*

Sodium Buoride\* Sodium hydroxide\*

Magnesium nitrate Sodium nitrate Magnesium oxide Sodium nitrite Magnesium phosphate Sodium phosphate\* Magnesium sulfate Sodium sulfate\*

Mercuric chloride Sodium sulfite-Molybdenum disulfide lube oil\*

Nitrio scid® Phosphoric acid Potassium bicarbonate Potassium carbonate

Sulfur, elemental Sufferic acid\* Titanium dioxide

Zinc chloride\* Zinc sulfate\*

**Organic Chemicals** 

Dichlorobenzene

Dichloroethylene

Dichlorophenol

Diethanolamine\*

4.4-Dichlorobinhenvl

Dimethylformamide\*

(DMMP)\*

Dimethyl sulfoxide\*

Dimethyl methyl phosphonate

Acetic Acid Acetone

Acetylsalicylic acid(aspirin)

Adumbran

4[(2-Amino-3, 5-dibromophenyl)methylaminolcyclohexanol

Ammonium acetate\*

Ammonium formate\* Ammonium oxalate\*

Benzene Biphenyl

Buanol\*

Calcium acetate\*

Carbon tetrachloride\* Carboxylic acids

Carboxymethyl cellulose Cellulose

Cerium Acetate\*

Chlorinated dibenzo-p-dioxins 6-chloro-2.3,4.5-tetrahydro-3-

methyl-1H-3-benzazepine hydrochloride

Chlorobenzene\* Chloroform\*

2-Chlororphenol\* o-Chlorotoluene\*

Cobalt acetate

m-Cresol\*

Cvanide\* Cyclohexane

DDT Decachlorobiphenyl

Dextrose Dibenzofurans

3.5-dibromo-N0cvclohexvl-Nmethyltoluene-,2-diamine

Dibutyl phosphate Dichloroacetic acid Dichloroanisole

4,6-denitro-o-cresol 2.4-Dinitrophenol Dinitrotoluene Dipyridamole

Disopropyl ethanolamine Diisopropyl ethylamine

Ethanol Ethyl acetate\*

Ethylene chlorohydrin

Ethylenediamine tetraacetic acid

Ethylene glycol Fluorescein\* Freon 22

Giveerol Hexachlorobenzene

Hexachlorocyclohexane Hexachlorocyclopentadiene

Iron acetate® Isooctane Isopropanol\* Lead acetate\*

Mercaptans Mercaptoethanol

Methanol\*

Methyl acetate\* Methyl cellosolve

Methylene chloride\* Methyl ethyl ketone

Methylphosphonic acid (MPA) Monoethanolamine\*

Nitrobenzene® 2-nitrophenol 4-nitrophenol Nitrotoluene. Octachlorostyrene

Octadecanoic acid magnesium salt

Paracetamol

Pentachlorobenzene Pentachlorobenzonitrile Pentachlorophenol\*

Pentachloropyridine

Phenol

Polychlorinated biphenyls (PCB\*) Polychlorotrifluoroethylene\*

Sodium acetate Sodium formate

Sodium hexanoate Sodium isethionate\*

Sodium propionate

Sucrose Surfactant

Tetrachlorobenzene Tetrachloroethylene\*

Tetrapropylene H Thiodiglycol\*

Toluene Tributyl phosphate

Trichlorobenzenes 1.1.1-Trichloroethane\*

1.1.2-Trichloroethane\* Trichloroethylene

Trichlorophenol Trifluoroacetic acid

1.3.7-Trymethylxanthine Unsymmetrical dimethyl

hydrazine

Urea o-Xylene\*

Zinc acetate®



#### iSCWO Release Streams Meet Environmental Requirements

| Waste Feed            | Gas Release                                                                                      | Liquid Release                                                                                        |
|-----------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Energetics            | $\rm O_2$ depleted/CO $_2$ enriched air, water vapor, and small amount of N $_2$ O; organic free | Organic-free water<br>and sodium salts<br>depending on<br>energetic formulation                       |
| Cleaning<br>Solutions | $\rm O_2$ depleted/CO $_2$ enriched air, water vapor, and small amount of N $_2$ O; organic free | Organic-free water and suspended metallic oxides                                                      |
| Organics              | ${\rm O_2}$ depleted/ ${\rm CO_2}$ enriched air and water vapor; organic free                    | Organic-free water                                                                                    |
| Pharmaceuticals       | $\rm O_2$ depleted/ $\rm CO_2$ enriched air and water vapor; organic free                        | Organic-free water<br>and dissolved salts<br>depending on<br>composition of waste                     |
| Fertilizers           | $\rm O_2$ depleted/CO $_2$ enriched air, water vapor, and small amount of N $_2$ O; organic free | Organic-free water<br>and dissolved<br>phosphate and sulfate<br>salts depending on<br>fertilizer type |





# iSCWO Unit Customization Level Dependent on Waste Type

| No Customization                                                                                                               | Low-Level Customization                                                                                                                                           | Mid-Level Customization                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Petrochemicals Hydrocarbons Organic bases Organics with sulfur Dyes and Pigments Pharmaceuticals Energetics Paints Fertilizers | Metals treatment Mining runoff Organics with metals Plastics Organic acids Organics with salts  System modifications  Salt processing Filters Upgraded feed pumps | Coal products Ceramic processes Poultry/pig/animal wastes Organics with phosphorus Rubber Pulp/timber processing Wood processing System modifications (Same as low-level plus:) |
|                                                                                                                                | Feed prep systems                                                                                                                                                 | Slurry grinding Advanced salts processing Improved liners                                                                                                                       |

#### Proposed Two-Phase Implementation Program

Phase 1 : Testing and Scoping Assessment

Phase 2 :
iSCWO
Business
Relationship

- Identify candidate waste streams
- Define throughput and effluent discharge requirements
- Perform tests at GA
- Evaluate results
- Conduct scoping assessment to determine extent of application
- Develop business plan

- GA provides all components, then assembles, programs automated controls/HMI and tests units for sale
- GA provides logistics support and training
- Possible joint venture relationship





#### Summary



- iSCWO is fully capable of destroying a wide range of pumpable hazardous wastes to environmental standards
- The iSCWO system is a highly competitive commercial product with wide application
- GA provides value priced waste testing capabilities for customers – know before you buy